

PiCloud

Building ownCloud
on a

Raspberry PI

PiCloud - Building ownCloud on a Raspberry PI by Sebastian Büttrich is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0
International License.
sebastian@less.dk

201509

What's the idea?

● Have our own cloud instead of somebody else's.

● Have fun with the Raspberry Pi.

● Have fun with Linux.

What's the idea?

What's the idea?

What's the idea?

What we will need

● 1 x Raspberry PI

● 1 x Power supply (1A, 5W)

● 1 x Monitor

● cable (HDMI) to Monitor

● Ethernet cable

● USB keyboard

● USB mouse

● SD card 8GB, either with preloaded Raspberry Pi software

or empty card, writing your own card (in which case you need a SD card
reader/writer, either in laptop or external)

● internet access

● your laptop (optionally)

About this guide

This side describes what we do. This side lists

GNU/Linux things

that we

meet & explore

along the way.

Preparation – SD card

We can either buy an SD card,

ready to use, with the Pi software on it

(that s what we have here today)

or we can burn our own:

Download and install NOOBS / Raspbian

Go to http://www.raspberrypi.org/downloads/

and download NOOBS (current version, May 2014, 1.4.1)

Unzip and write to SD card, following the instructions, contained in
the file

INSTRUCTIONS-README.txt

The exact steps are depending on your operating system.

(We will format the SD card to FAT16, with a maximum size of 4
GB).

http://www.raspberrypi.org/downloads/

Preparation - Hardware

Unpack PI,

put SD card in slot on backside,

Connect keyboard, mouse & screen

And power up,

Via power supply with
USB micro connector.

Preparation - Hardware

Installation & Configuration

We already have Raspbian on our SD cards.

However, if starting with NOOBS
(a start platform that offers different OSs):

Choose which OS to install:

Raspbian is recommended.

Writing the OS will take 10-20 minutes, so be patient and
prepare next steps.

When the installation of the OS is complete, confirm by
clicking “OK”. This will restart the Pi.

Raspbian is a
free operating
system based on
Debian
GNU/Linux and
optimised for the
Raspberry Pi

Installation & Configuration

Starting with Raspbian:

On first startup,

Raspbian will come up with the Software Configuration Tool.

Click through all settings and check.

You should definitely

2. change the default user's password.

You might like to

3. Enable boot to desktop

if you prefer having a graphical desktop
(though you will not necessarily need it! We will use it for some
things, but once we are done, it is better to run without it).

When done, reboot.

Note:
We can run Raspbian

(like most other Linux
distros)

in

GUI/Desktop mode

(X server)

or as pure

command line.

First steps on the command line: users

Log on

User: pi

Default password: raspberry

Let us get familiar with a few first things:

Users

Change your own password!

Change the root password!

Then become root.

Then exit and be user pi again.

$sudo

Lets you perform actions with root rights

$su <username>

Changes to a user

$su

Changes to root user

The prompt sign then is a

#

Instead of a

$

$passwd <user>

Changes a user's password.

$exit

Ends a users session.

ps -ef

Root and sudo

When configuring a system or a service, many commands have to
be run as root.

For a command to be executed by a normal user, we write

$<command>

When root is definitely needed, we write

#<command>

It is safer to execute commands that require root rights as

$sudo <command>

because it forces you to say “i really want to do this as root” for each
and every command.
It is easier to make fatal mistakes when you are root.

When you try a command as normal user, and you get a “permission
denied”, then consider whether you might need root rights for this.

$sudo

Lets you perform actions with root
rights

$su <username>

Changes to a user

#su

Changes to root user

The prompt then is a

#

#passwd <user>

Changes a user's password.

#exit

Ends a users session.

Adjust keyboard

Run

$ sudo dpkg­reconfigure
keyboard­configuration

and choose your layout.

Then reboot:

$ sudo shutdown ­r now

Commands &
filenames can be very
long …

Try using the
Tab key as you type

It's the autocomplete.

It's your best friend,

Alongside the

up/down arrows,

that go through your
command history.

Directories & files

Check what directory (dir) you are in,

And what's in it.

Then change to the filesystem's

uppermost directory, the fs root:

/

Check what's in there.

Then look at

/etc where all the setting and config live

/home where all user files are

/var where e.g. the logs are

$pwd

Print working directory, shows you
where you are

$ls

Lists dir contents

$cd

Changes directories

Two crucial in order to learn about
commands:

$man <command>

Gives you the manual page.

$<command> ­­help

Shows you quick help.

Directories & files

Go to

/var/log

Look at all logs,

Show all info in list,

And sort by time,

with the newest one last.

Then go back to your own home dir.

$ls ­­help

Will show you help for
the ls command

$cd ..

Brings you one
directory up.

Text commands

Look at what's inside the file

.bashrc

In your home dir.

Then write a little test file.

Call it test.txt

The vi text editor takes some getting used to,
but once you got it, it rocks.

Open your browser (if you have a GUI) and
find a vi cheat sheet.

$cat

Outputs a text file

$less

is nicer – you can scroll down, one
screen at a time.

$grep

finds text in files, e.g.

$grep error /var/log/*

$vi

Opens the vi text editor.

$nano

is another text editor. Meh.

.

vi in 60 seconds

In vi:

Letters bring you into edit mode,
ESC brings you back.

 i = insert

 o = new line

 x = delete characters

 dd = delete line

 shift-zz saves

 q:! exits without saving

And so forth

$vi <filename>

Opens a text file

If the file doesn't exist,

it creates the file.

vi in 60 seconds

... back to work – package management

Debian type Linux uses

Advanced Packaging Tool,

 apt,

To maintain software packages.

Use apt-get to update and then

upgrade your system.

It will take a moment.

While we wait, we have time for Q&A.

Also, install a package named aptitude.

It s a nice-to-have extension of apt-get.

#apt­get update

gets an update about whats
new in the repository.*

#apt­get upgrade

Upgrades, based on what
the update found.

#apt­get install
<package>

Installs a package.

* go to /etc/apt and find
what sources (repositories)
we are getting our files
from.

Installing owncloud packages

Use apt-get again, to install the following:

mysql-server owncloud

mysql will have a few questions when it installs,

such as a password for the mysql root user.

Remember your answers!

It might also be nice to have

phpmyadmin

for database administration via browser.

gparted

for partitioning.

 apt-get finds out about dependencies on its own, and installs these
too.

#apt­get install
<a long list of
things>

Installs a lot of things.

Installing the newest owncloud
We have just installed owncloud from the distribution's standard repository.

However, if you would like to have the latest release, follow the guide on

https://software.opensuse.org/download/package?project=isv:ownCloud:community&package=owncloud

Add the repository key to apt. Keep in mind that the owner of the key may distribute updates, packages and
repositories that your system will trust (more information).

To add the key, run:

wget
http://download.opensuse.org/repositories/isv:ownCloud:community/Debian_7.0/Releas
e.key

apt­key add ­ < Release.key

Then add the repo to your list of sources

echo 'deb
http://download.opensuse.org/repositories/isv:/ownCloud:/community/Debian_7.0/ /'
>> /etc/apt/sources.list.d/owncloud.list

and do

apt­get update

apt­get install owncloud

#apt­key add

adds a trusted
repository's key to your
package manager

https://software.opensuse.org/download/package?project=isv:ownCloud:community&package=owncloud

Find and mount the USB drive

Plug in a USB stick and see what device name it shows up as.

typically it is

/dev/sda1

in what follows, we assume it is.

Make a directory

 /media/usbstick

and mount it:

 #mount -t vfat -o rw /dev/sda1 /media/usbstick/

If this worked, your USB stick is recognized.

$watch ls /dev/sd*

“watches” the result of
$ls /dev/sd*

(every 2 seconds)

$mkdir

Make a directory

#mount

Mount a device to a
mountpoint (a directory)

Format USB drive

We will prefer a better filesystem for our
datastore, and we need to make the mount
permanent, so that we dont have to
remount each time we start our PI.

Use GUI tool gparted to format your USB
stick to type ext4.

You can also use command line tools.

#gparted

GUI format tool

#fdisk

#mkfs.ext4

Command line tools for
formatting and fs
creation

Make mount permanent

Find your USB stick's UUID via
blkid.

Then edit your /etc/fstab, add a line:

UUID=<yourUUID> /media/usbstick
ext4 rw,defaults 0 0

e.g
UUID=86d9ad0d­5911­4a74­9ea0­ff380e3a9221 /media/usbstick ext4 rw,defaults 0 0

Test by rebooting – is the USB stick there?

/etc/fstab

File that keeps mount
information

$blkid

utility to locate/print
block device attributes

Make data directories

There's two ways we can make a data directory for ownCloud:

1. We make a directory

/media/usbstick/data

And tell owncloud to use that.

2. We empty and remove ownclouds standard data directory

And make it a symlink to ours instead:

#cd /var/lib/owncloud

#mv /var/lib/owncloud/data/*
/media/usbstick/data
#rmdir data

#ln ­s /media/usbstick/data ./data

$mkdir

Make a dir

$ln ­s

Creates a symbolic link

$mv

Move file

$cp

Copy file

$rm

Remove file

$rmdir

Remove dir

(* is the wildcard)

Configure owncloud

Now we will use a browser,

locally on the PI

or from another computer.

We d need to know the PI's IP number in
that case.

Point your browser at

http://localhost/owncloud

Or the IP you found.

$ifconfig

Lists interface
configurations

http://localhost/owncloud

Configure owncloud

Complete the web GUI configuration -

We might get a few complaints about

Permissions. In case we do:

Owncloud keeps its configurations in

/etc/owncloud

And its data where we tell it to keep them -

So the webserver user (www-data) needs
permissions to write there.

$ls ­al

Lists directories
including premissions

Linux permissions

Each file or directory has an owner

and permissions like this:

This means,

Read, write and execute,

For

Owner, group and world.

$ls ­al

Lists directories
including permissions

Linux permissions, numeric

The easiest (!) is to express these as
numbers

Each rwx becomes a

22 21 20 = 4 2 1

So

 rwx --- --- = 700

 rwx r-x r-x = 755

 rw- r-- r-- = 644

#chown

Sets an owner

#chmod

Sets permissions

Setting permissions for our data directory

We want our data directory to be

Owned by user www-data

With all rights to that user,

And no rights to anybody else!

This means ...<quiztime>

#chown

Sets an owner

#chmod

Sets permissions

Setting permissions for our data directory

#chown www­data:www­data <our data dir>

#chmod 700 <our data dir>

#chown

Sets an owner:group

#chmod

Sets permissions

Test it!

In your browser,

Go to

http://<ip>/owncloud

And take a look around!

What's left to do? A lot!

There is a number of important things that are out of the scope of this workshop
– however they are very important,

And we will give a few hints in the Appendix:

1. Put the PI in a network place

where we can reach it, via public IP.

For example,

On the DMZ of your home router.

2. You can't do that without looking at

Security.
1. & 2. ==> Workshop part 2.

3. Download owncloud clients to all our devices.

4. Share with friends, neighbours, family, ...

/etc/network/interfaces

contains network
interface configurations.

Example:
auto eth0

iface eth0 inet static

address 130.226.142.200

network 130.226.142.192

netmask 255.255.255.224

broadcast 130.226.142.223

gateway 130.226.142.193

iface eth0 inet6 auto

Space for everything we have forgotten to talk about

…... #

Thanks!

sebastian@itu.dk

Appendix: Minimal Security

Running a cloud file server requires strict security.
Here's a few absolutely essential, minimal things you need to do:

1. ownCloud uses a webserver for all communications. If you run
normal http, all your usernames, passwords and communications
are sent in the open.
Therefore, run your webserver (apache) on SSL only:

https://httpd.apache.org/docs/current/ssl/ssl_howto.html

2. Make sure your logon via ssh is secured – learn how to
configure sshd_config.
It is a good idea to only allow logon from trusted networks, and
only via ss key – not by username and password.

3. No telnet, no ftp allowed!

4. Consider using denyhosts and fail2ban

5. Keep server updated and users managed.

/etc/apache2

contains web server
configurations.

/etc/ssh

contains ssh
configurations.

https://httpd.apache.org/docs/current/ssl/ssl_howto.html

Appendix: Router DMZ

Most routers for home use allow for the
exposure of a certain IP in the so called
DMZ – this means, they will be visible from
the outside world, or defined networks.
This screenshot shows a Cisco example:

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

